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Abstract. We study the effect of electron–electron scattering on the polarization dephasing
rates of infrared-coupled intersubband transitions in n-doped quantum wells. By numerical
solution of the Boltzmann and optical Bloch equations we show how these rates depend on the
properties of the infrared field and the doped quantum well. We also determine the electron
distributions in each subband for various field intensities and detunings. We show that when the
system is probed by a weak infrared field, a tunable Raman-type gain spectrum can be generated
under certain conditions.

1. Introduction

Intersubband transitions in n-doped quantum well (QW) structures have attracted a great
deal of attention in recent years. They have important practical applications such as
semiconductor lasers and infrared (IR) detectors [1, 2] and can be used to study two-
dimensional electron gas systems, intersubband scattering rates of electrons, nonlinear
processes in QWs, etc [3–9]. In these studies an IR field polarized along the growth direction
of a QW strongly couples the ground subband to a higher one. Nearly all of these studies
assume that the energy relaxation rates of electrons in the conduction subbands and the
dephasing rates of polarization associated with the intersubband transitions are independent
of the electron wavevector and are mainly caused by electron–phonon scattering [6–11]. As
a result, the relaxation time approximation (RTA) has been applied extensively to describe
the damping of the diagonal elements of the density matrix even when the IR intensity is
not small. Similar assumptions have been made in the discussion of optical intersubband
transitions in p-type structures [12].

We show in this paper that considering the electron–electron scattering process calls into
question the validity of these assumptions. Various effects of electron–electron scattering
have been studied in recent years, including renormalization of the intersubband transition
energy, and excitonic effects (vortex correction of the polarization) [10, 11, 13]. The effects
on the damping rates of polarization and of electron energy remain untackled, however. To
our knowledge, all previous studies have modelled these rates phenomenologically using
constant parameters [6–13]. Intersubband transitions involving the ground subband are
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strongly affected by the electron–electron scattering process, though, which implies that the
actual rates depend on the electron wavevector (k), distribution function and density. Even
when the infrared field only weakly perturbs the ground subband distribution function so
that the RTA is valid (the weak-field regime), the strongk dependence implies that one
cannot consider the damping rates to be constant for all values ofk. This means that the
traditional assumption of homogeneous transition rates for allk is invalid even for weak
driving fields.

When the IR intensity is not weak, three major issues are raised which to our knowledge
also remain unexplored. First, the IR field generates non-Fermi steady-state electron
distributions in both of the coupled subbands. Second, saturation effects can be seen once
the higher subband is significantly occupied. This case has been studied in the past by
employing the RTA and ignoring electron–electron scattering [6–9]. A consistent treatment
requires solving the Boltzmann equation in the presence of the IR field, instead. Third,
one can use an additional weak IR field to induce quantum interference and gain processes
in a simple two-subband QW system. This concept is very appealing for generation of
far-infrared lasers in QWs.

The goal of this paper is to address these issues by considering a rigorous treatment
of intersubband transitions in n-doped QWs including the mutual effects of the screened
electron–electron scattering process and the transitions on each other. We show that the
damping rates of electrons and polarization not only depend on the temperature, the electron
distribution function, the density, the effective mass, and the QW parameters, but also on
the IR intensity and frequency. In the strong-field regime we also discuss the quantum
interference and gain processes when the strongly driven n-doped QW is probed by a
weak field with the same polarization as the driving field. Our investigation shows that
the linear response of the system to the weak field can have a Mollow spectrum similar
to that observed in atomic systems [14]. This includes generation of gain with hidden
inversion (Raman gain), and gain caused by stimulated Rayleigh scattering. We show that
the Raman gain in this system is tunable over a range of frequencies comparable to that
of the intersubband transition, just by changing the intensity of the driving field. Also,
in the strong-field regime we calculate the absorption coefficient using a non-perturbative
approach. Our results show significant differences from those obtained using perturbative
RTA-based approaches [7, 8].

In section 2 of this paper we present our formalism which deals with linear and non-
linear intersubband transitions in n-doped QWs. In section 3 we study the polarization
dephasing rates caused by electron–electron scattering in the weak-field regime. The
dynamic evolution of the electron distribution functions and polarization dephasing rates
in the presence of a strong IR field is studied in section 4 for various field intensities and
frequencies. In section 5 we revisit the saturation effects in the absorption coefficient of
this system. In section 6 we discuss the linear response of the system to a probe field.
Sections 7 and 8 contain discussion and concluding remarks.

2. Formalism

We are interested in the interaction of an IR field with an n-doped QW. This field is
considered to be resonant or nearly resonant with the transition between the first and the
second conduction subbands (1–2) and quite off-resonant with all other transitions. We
assume that in the absence of the IR field only the ground subband is occupied, with a
Fermi–Dirac distribution. In the rotating-wave and dipole approximations the coupling of
this electronic system with the IR field,E(t) = Ee−iωt , polarized along the QW growth



Intersubband transitions of n-doped QWs 2491

direction,z, can be described by the Hamiltonian

Hint = h̄
∑
k

{µ12E(t)c
†
1,kc2,k + µ∗12E

∗(t)c†2,kc1,k}. (1)

Here µ12 is the electric dipole moment for the transition between the first and second
conduction subbands along thez direction, which is assumed to bek-independent.ci,k and
c
†
i,k are respectively the annihilation and creation operators of an electron in|i,k〉 (the state

of an electron with wavevectork and subband indexi) with energyEc(i, k).
The density matrix elements of this system in the presence of the IR field can be obtained

from

∂ρ

∂t
= − i

h̄
[H0+Hint, ρ] + ∂ρ

∂t

∣∣∣∣
relax

. (2)

HereH0 is the Hamiltonian of the system in the absence of the infrared field, and(∂ρ/∂t)|relax

refers to the relaxation terms of the density matrix. In general this term has two components:

∂ρ

∂t

∣∣∣∣
relax

= ∂ρ

∂t

∣∣∣∣
e−e

+ ∂ρ
∂t

∣∣∣∣
e−p

. (3)

The first term on the right-hand side represents the relaxation process caused by electron–
electron scattering. For diagonal elements of the density matrix it is given by the Boltzmann
equation:

dρkii
dt

∣∣∣∣
e−e

= 0in
i (k, ρ

k
ii )(1− ρkii )− 0out

i (k, ρ
k
ii )ρ

k
ii . (4)

Here 0in
i (k, ρ

k
ii ) and 0out

i (k, ρ
k
ii ) are the scattering in and out rates at|i,k〉 due to the

electron–electron scattering process. They are given by

0in
i (k, ρii) =

4π

h̄

∑
p,q

ρ
p
iiρ

k−q
ii (1− ρp−qii )|Vi(q, h̄ω′)|2

×δ(Ec(i,k)+ Ec(i,p− q)− Ec(i,k − q)− Ec(i,p)) (5)

and

0out
i (k, ρii) =

4π

h̄

∑
p,q

(1− ρpii )ρp−qii (1− ρk−qii )|Vi(q, h̄ω′)|2

×δ(Ec(i,k)+ Ec(i,p− q)− Ec(i,k − q)− Ec(i,p)). (6)

HereVi(q, h̄ω′) is the screened electron–electron interaction given by

Vi(q, h̄ω
′) = vqFi(q)

εi(q, h̄ω′)
(7)

wherevq = 2πe2/(Sqεb), e is the electric charge,S the area of the QW andεb is the bulk
dielectric constant which is assumed to be the same in the QW and in the barrier. Also
h̄ω′ = Ec(i,k − q)− Ec(i,k), and the form factorFi(q) is given by

Fi(q) =
∫ ∫
|φi(z)φi(z′)|2 e−q|z−z

′| dz dz′. (8)

Hereφi(z) is the confinement wave function for theith conduction subband. The screened
dynamic dielectric function due to the quasi-two-dimensional electron gas is given by

εi(q, ω) = 1+ vqFi(q)χi(q, ω) (9)
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where

χi(q, ω) = 2
∑
p,δ→0

ρ
p
ii − ρp−qii

Ec(i,p− q)− Ec(i,p)+ h̄ω − iδ
. (10)

The contribution of the electron–electron scattering process to the dephasing rates of
the system is determined according to

∂ρkij

∂t

∣∣∣∣
e−e

= −γ e−e
ij (k)ρkij +

∂ρkij

∂t

∣∣∣∣e−e

nd

i 6= j (11)

whereγ e−e
ij (k), the diagonal contribution to the dephasing rate, is given by

γ e−e
ij (k) = −Im (6e−e

i (k)+6e−e
j (k)). (12)

Here6e−e
i is the retarded self-energy which is related to0out

i and0in
i by

Im6e−e
i (k) = − 1

2(0
in
i (k)+ 0out

i (k)). (13)

The second term of (11) refers to the non-diagonal contribution of the electron–electron
scattering process to the polarization dephasing rate. This term describes the rate of
polarization transfer between the statek and other states, due to the scattering process.
It has been shown that this term plays a significant role, in that it partially cancels the
diagonal contribution, affecting the gain lineshape in inverted semiconductors [15, 16]. In
the limit of high electron density, however, one can neglect this term due to strong screening,
as shown in [15]. Therefore we consider only the dephasing given by (12) and (13) [17].
Also note that in the above discussion we have ignored any intersubband transitions caused
by electron–electron scattering. This process can be significant when the energy spacing
between the subbands is small [18].

Returning to (3), the second term represents the electron–phonon scattering process’
contribution to the damping of the electronic system. This depends on the kinetic energy of
the electrons and which subband they are in. For the ground subband, if the Fermi energy
is less than the energy of longitudinal–optical phonons (LO phonons) the only such process
is electron–acoustic phonon scattering. This process is weak and diffusive [19]. The upper
subband is assumed to be separated from the ground subband by an energy greater than the
LO phonon energy. Since the electron envelope functions in this subband are asymmetric
and much less localized than those in the ground state, the dominant energy relaxation
mechanism is intersubband transition via emission of LO phonons. This means that the
damping rates due to electron–electron scattering are always either fast (in|1,k〉) or slow
(in |2,k〉) relative to the rates due to electron–phonon scattering. We therefore represent the
latter phenomenologically. This is consistent with the fact that electron–phonon scattering is
nearly independent ofk for electrons with kinetic energies less than the LO phonon energy
[19]. The electron–phonon scattering processes are thus represented in our model by

dρk11

dt

∣∣∣∣
e−p

= dρk11

dt

∣∣∣∣
diff

(14)

and

dρk22

dt

∣∣∣∣
e−p

= −0p2ρk22. (15)



Intersubband transitions of n-doped QWs 2493

Here 0p2 is the intersubband transition rate of an electron in the second subband due to
emission of LO phonons. (14) explicitly refers to the diffusive nature of electron energy
relaxation in the first subband. For the off-diagonal terms we have

dρkij
dt

∣∣∣∣
e−p

= −γ pij ρkij (16)

whereγ pij is the dephasing rate caused by the electron–phonon scattering process. This is
given by

γ
p

12 = 1
2(0

p

2 + 0p1 ) (17)

where0p1 is the electron–acoustic phonon scattering rate.
From the above, one can derive the equations of motion for the density matrix elements:

dρk11

dt
= −i�12(ρ

k
21− ρk12)+

dρk11

dt

∣∣∣∣
e−e

+ dρk11

dt

∣∣∣∣
diff

+ Pkk′ (18)

dρk22

dt
= i�12(ρ

k
21− ρk12)− 0p2ρk22 (19)

and

dρk21

dt
= −i[1k − iγ e−e

12 (k)− iγ p12]ρk21− i�12(ρ
k
11− ρk22). (20)

Here�12 = −µ12E/h̄ is the Rabi frequency of the IR field.Pkk′ is the population rate
of |1,k〉 due to relaxation of electrons out of states in the second conduction subband
with wavevectork′. This term includes both the intersubband transition and the subsequent
cascade in the ground subband due to LO phonon decay. Since here the electron probability
is calculated in each subband, in contrast to previous studies which only calculatedρ22−ρ11

[7, 8], it is crucial to consider such a term. In general (18) can have a complicated form
sincePkk′ couples states with different wavevectorsk. However, in the case where the
energy spacing of the subbands is nearly equal to an integer number of LO phonon energies
(Ec(2, k)−Ec(1, k) = nh̄�LO) the problem becomes tractable. In this case we can impose
the condition that

ρk11+ ρk22 ∼ ρ0k
11. (21)

Hereρ0k
11 is the Fermi–Dirac distribution of the ground subband in the absence of any IR

field. This yieldsPkk′ ∼ 0
p

2ρ
k
22δkk′ . As will be shown in section 4, the requirement that

Ec(2, k)− Ec(1, k) = nh̄�LO can be relaxed in the case of high field intensity.
Regarding (18)–(20), one should note that the internal field effect terms which

renormalize the Rabi frequency have been neglected. This is because, as discussed in
[20], for high excitation screening plays a major role and reduces the effect of these terms.

Note also that since the electron density is considered to be high, the depolarization
effect can renormalize the detuning

1k = Ec(2, k)

h̄
− E

c(1, k)

h̄
− ω (22)

which appears in (20) [21]. Additionally,Ec(i, k) can be affected by the self-energies
[11–13, 22] and by the band bending effect. The latter depends on how the QW is doped,
and is expected to have an insignificant effect for uniformly doped structures [23].

To study the linear response of the system discussed above, we consider an optical probe
field with the same polarization as the strong field. This field does not perturb the system
significantly. This case is similar to that studied by Mollow in atomic systems [14], but
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is complicated by the momentum dependence of intersubband transitions in n-doped QWs.
To find the linear response of the system to the probe field we use linear response theory
and the quantum regression theorem. The absorption spectrum of the weak probe field is
found to have the form

A(ωp) = Re
∑
k

ρk11〈[p+k (t ′), p̂−k (z, t ′)]〉|z=iωp . (23)

Here ωp is the probe frequency.p−k and p+k are the negative and positive frequency
components of the system polarization at a specifick, given by

p+k (t) = µ12c
†
1,k(t)c2,k(t) (24)

and

p−k (t) = [p+k (t)]
∗. (25)

p̂−k (z, t
′) is the Laplace transform ofp−k (t = τ + t ′) with respect toτ = t − t ′ with τ > 0.

For steady state conditions (t, t ′ → ∞),

〈[p̂+k (∞), p̂−k (z)]〉 = µ2
01{ρk21(∞)[Rk32(z)− Rk31(z)] − Rk33[ρk11(∞)− ρk22(∞)]}. (26)

HereRkij (z) are the elements of the matrix

Rk(z) =


z+ 0p2 0 −i� i�

0 z+ 0p2 i� −i�
i� −i� z− i[1k + i(γ e−e

12 (k)+ γ p12)] 0
−i� i� 0 z+ i[1k − i(γ e−e

12 (k)+ γ p12)]


−1

.

The absorption coefficient of the intersubband transition is given by

α(ω) = ω
√
µ

εR
Im [ε0χ

′(ω)]. (27)

Hereµ andεR are the permeability and the real part of the permittivity, respectively.χ ′(ω)
is the susceptibility of the system for the particular transition, given by

χ ′(ω) = 1

πεLeff

∫ kmax

0
k dk

|µ12|2(ρk11− ρk22)

h̄[1k − i(γ e−e
12 (k)+ γ p12)]

(28)

whereLeff is the effective length over which the interaction occurs, taken to be the width of
the QW. One difference between (28) and the analogous equation used in the previous
investigations [7–11] is the addition ofγ e−e

12 in the denominator. Another significant
difference between our approach for calculation ofα(ω) and those previously reported
is that we calculateα(ω) accurately. In the past, perturbative methods have usually been
used to find the response of QWs in terms of various orders of the susceptibility [7–9].
As we find in section 5, the results of our approach are very different from those of the
perturbative methods.

3. Electron–electron scattering effects on the intersubband polarization dephasing
rates in the weak-field regime

In this section we study how the electron–electron scattering process contributes to the
polarization dephasing rateγ e−e

12 (k) in the weak-field limit. In this limit, depletion of
the ground subband population by the IR field is ignored, and (12) and (13) reduce to
γ e−e

12 (k) = 1
2(0

out
1 + 0in

1 ), evaluated using the zero-field population. Here(0out
1 + 0in

1 ) is
the damping rate of quasi-holes (QHs) or kinetic holes, generated by transitions out of the
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Figure 1. Polarization dephasing rates caused by electron–electron scattering for various
temperatures for Al0.3Ga0.7As with 6.5 nm well width. Density of electrons is 7× 1011 cm−2.

ground subband. These rates have been studied by Binderet al [17] and Lyo [24]. Binder’s
analysis was applicable only to QHs generated by interband transitions in inverted bulk
semiconductors. Lyo’s study considered QW structures, but did not use realistic structures
for temperatures above 0 K. Lyo’s work also gave little insight into how the damping rate
varies with wavevector at elevated temperatures. In this section we present the results of
numerical calculations of the QH damping rate for a realistic QW structure at temperatures
above 0 K.

We first consider an n-doped GaAs/AlxGa1−xAs QW with 6.5 nm well width and
x = 0.3. The effective mass of the electrons is taken as 0.07m0 (m0 is the free electron
mass), and the electron density is 7× 1011 cm−2 (εf = 24 meV at 0 K). In figure 1 we
showγ e−e

12 (k) for various temperatures. ForT = 4 K, γ e−e
12 (k) decreases from a maximum

value atk = 0 to∼0 at k = kf = 0.210 nm−1 and then increases fork > kf . This feature,
which has been predicted by Binder for bulk semiconductors, becomes less significant at
higher temperatures. At 100 and 200 K (dashed and dotted lines)γ e−e

12 (k) is significantly
higher for allk. For T = 0 K (not shown) the damping rate is very close to that shown for
T = 4 K, for k < kf . Our model is the same as that used by Lyo at 0 K [24], and gives
identical results when applied to the structures Lyo considered. For higher temperatures,
however, Lyo used a different model which produces results that disagree with those of the
former model by up to a factor of two.

Next we examine howγ e−e
12 (k) changes with conduction band offset. We consider

1Ec = 107 meV and1Ec = 213 meV, which correspond tox = 0.15 andx = 0.3
respectively, and1Ec = 10 eV [11]. The last case is not realistic but is an approximation
to the infinite-well model used by others [24]. The material structure is the same as that of
figure 1 with the same electron density and well width. The temperature is 4 K. Figure 2
shows that, for states far from the Fermi edge, increasing the value of the offset causes
an increase inγ e−e

12 (k). This is because as the band offset increases, the electrons become
more confined and the strength of their interaction with other electrons increases.

Figure 3 shows the effect of electron density onγ e−e
12 (k) at 4 K, using the same structure

as in figure 1. All of the densities are chosen such that the Fermi energy is less than the
LO phonon energy (n = 5 × 1011 cm−2 with εf = 17 meV; n = 2 × 1011 cm−2 with
εf = 6.8 meV). As the electron density decreasesγ e−e

12 (k) is significantly reduced over a
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Figure 2. Polarization dephasing rates caused by electron–electron scattering for various
conduction band offsets for AlxGa1−xAs at T = 4 K. All other specifications are the same
as those of figure 1.

Figure 3. Polarization dephasing rates caused by electron–electron scattering for various electron
densities for Al0.3Ga0.7As with 6.5 nm well width atT = 4 K. All other specifications are the
same as those of figure 1.

large range ofk. In the vicinity of the Fermi energy, however, there is a slight increase in
the dephasing rate.

4. Field-dependent electron–electron scattering effects in the intersubband transition
of quantum wells

To study the electron–electron scattering effects in the intersubband transition of a QW under
an intense IR field, one must simultaneously solve the Boltzmann equation and the optical
Bloch equations (18)–(20). From (11)–(13), the scattering-out and in terms of (4) directly
affect the dephasing rates of intersubband transitions. These rates therefore depend on the
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Figure 4. Electron distribution functions. The solid lines correspond to�12 = 0 ps−1, dashed
lines to�12 = 2 ps−1, dotted line to�12 = 5 ps−1 and dashed–dotted line to�12 = 10 ps−1.
(a) and (b) show the distributions in the first subband for1 = 0 and1 = 10 ps−1, respectively.
(c) and (d) show the distributions in the second subband for the same respective cases.

IR frequency and intensity in addition to the electron density, QW structure, temperature
etc. We assume that the IR field does not vary significantly on the scale of the system’s
characteristic dephasing time, allowing steady-state solution of (18)–(20). From (18) and
(19),

dρk11

dt
+ dρk22

dt
= dρk11

dt

∣∣∣∣
e−e

+ dρk11

dt

∣∣∣∣
diff

+ Pkk′ − 0p2ρk22. (29)

In the steady state, the right-hand side of (29) is zero. From section 2,Pkk′ ∼ 0
p

2ρ
k
22,

therefore

dρk11

dt

∣∣∣∣
e−e

+ dρk11

dt

∣∣∣∣
diff

= 0. (30)

Using this allows (18)–(20) to be solved, yielding the results shown in figure 4.
We consider the same QW structure as used for figure 1 withEc(1, 0) = 55 meV and
Ec(2, 0) = 199 meV [25], and takeT = 4 K, 0p2 = 5 ps−1, and0p1 = 0.1 ps−1. Figure 4(a)
shows the ground state electron distribution for1k = 0. In the presence of an IR field
such that�12 = 2 ps−1 (dashed lines), there is significant depletion of the initial Fermi
distribution inρk11. This depletion is non-uniform ink, however: states close to the Fermi
energy are depleted more than others. As the field intensity is increased,ρk11 undergoes
approximately linear depletion until�12 ' 5 ps−1 (dotted line), where it begins to saturate.
Further increase in�12 causes less change inρ11, as shown.
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Figure 5. Polarization dephasing rates caused by electron–electron scattering corresponding to
figure 4(a). Inset shows the contributions due to scattering in (dashed–dotted line) and scattering
out (dashed line) for� = 10 ps−1.

Figure 4(c) shows the corresponding evolution of the electron distribution in the second
subband. One can see that at low field intensity the electron distribution is not flat.
As expected, increasing the infrared intensity causes the excited and ground states to
become more equally populated. In the high-field limit where�12 � γ e−e

12 + γ p12 we
haveρk11 = ρk22 = 0.5 for all k.

The features seen in figure 4(a) and (c) are results of the electron–electron scattering
process in the ground subband. To see this in more detail, we show in figure 5 the dephasing
rates of polarization corresponding to the distribution functions shown in these figures. The
solid line in this figure shows the rate corresponding to the undisturbed Fermi distribution
(�12 = 0). As the field intensity increases, the damping rates increase dramatically. For
�12 = 2 ps−1, for example, the rate is increased by more than a factor of two. In other
words, the IR field extensively broadens the ground subband states via an enhancement
of the electron–electron scattering process. This process saturates in the high-field limit,
however.

The inset of figure 5 shows the separate contributions due to scattering in and out for
�12 = 10 ps−1. For a Fermi distribution atT = 4 K, 0in

1 dominates fork < kf , while 0out
1

dominates fork > kf . This is a direct result of the Pauli exclusion principle. For the case
shown, however, this principle has less effect and both scattering terms contribute to the
dephasing rate of a state in the ground subband. Such a state therefore becomes increasingly
broad as the IR field intensifies. This process, however, depends very much on the density
of electrons in the subband. At saturation, the electron density in the ground subband drops
to half of its value in the uncoupled case, and the broadening reaches its maximum.

Now we consider the effect of detuning the infrared field on the intersubband transition
and the electron–electron scattering process. We use the same structure as in figure 4, but
with 1k = 10 ps−1. As shown in figure 4(b) and (d), the principal effect of detuning
is the expected reduction of the transition rates. For similar�12 a smaller change inρ11

andρ22 is seen than for resonant coupling. There exists a distinct feature which was not
expected, however. In figure 4(b) we see that, in contrast to figure 4(a), when�12 = 2 and
5 ps−1 the distribution is less depleted near the Fermi edge than away from it. Therefore, in
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Figure 6. Absorption coefficient for�12 = 0.1 ps−1 (circles),�12 = 2 ps−1 (squares), and
�12 = 10 ps−1 (diamonds). ω12 is the frequency corresponding to the intersubband energy
spacing. All other specifications are the same as those in figure 1.

figure 4(d), the distribution has a shoulder close tokf , rather than a peak as in figure 4(b).
This can be understood by noting that when the energy spacings are similar, the detuning
of a field has much more effect on transitions which are associated with smaller dephasing
rates or narrower transition states. Therefore, in detuned coupling conditions, if the field
intensity is low enough that thek dependence ofγ e−e

12 is significant, the states close tokf
should show less excitation than those withk ∼ 0.

5. Absorption coefficient

There is much interest in studying the absorption coefficients of QWs in the high-field
regime, where the field intensity is high enough to excite large numbers of electrons into
the second conduction subband. This has often been studied in the past using formalisms
which are suited only for the linear response regime, i.e. those using the RTA [6–9]. In
some cases electron–electron interaction effects such as vortex correction (exciton effect)
were included [11, 13], but even in these cases the damping rate in (28) was taken to be
constant.

In figure 6 we show the absorption coefficient one obtains for the system of figure 4
when the electron–electron scattering effect is included. We assume thatµ12 = e × 2 nm,
which means that�12 = 1 ps−1 corresponds to an intensityI = 0.06 MW cm−2 (I scales
as the square of the Rabi frequency). For the weak-field case withI = 0.6 kW cm−2

(�12 = 0.1 ps−1), a non-saturated response is observed (circles). When the field intensity
increases to 0.24 MW cm−2 (�12 = 2 ps−1), the absorption coefficient shows a strong
saturation (squares). Further increase in the field intensity to 6 MW cm−2 (�12 = 10 ps−1)
causes complete saturation (diamonds). These results are consistent with those shown in
figure 4. In contrast to previous investigations, there is no structure in the spectrum’s peak.
The perturbative approaches used in those investigations produced such structure since
the third-order term in the susceptibility made a negative contribution to the absorption
coefficient which become significant at high field intensity [7, 8]. In addition, the use of the
relaxation time approximation makes the previous results questionable, at best.
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6. Linear response of infrared-driven quantum wells, generation of tunable gain
spectrum

In this section we study the linear response of the IR-driven QW discussed in the last section
to a second infrared field with the same polarization but much lower intensity. This is similar
to previous studies, which have been carried out on optically driven two-level atomic systems
[26]. One significant observation in these studies was that these systems produce two kinds
of gain: one due to inversion of the dressed states with no bare-state inversion (the so-called
Raman or hyper-Raman gain), and another due to stimulated Rayleigh scattering. Lasing
based on both types of gain has been successfully demonstrated in atomic systems [27].

We show that although the two-subband QW system discussed in this paper is different
in many ways from these atomic systems, it can demonstrate qualitatively similar dynamics.
What distinguishes this investigation, however, is that the Raman gain in QW systems can
happen at a range of frequencies comparable to that of the intersubband transition. This
makes it suitable for IR and far-infrared lasing. As we will show below, the gain frequency
can be made less than half that of the driving field by increasing the field intensity and
detuning it positively with respect to the intersubband transition. Frequencies above3

2ω can
be obtained by using negative detuning.

Before examining the detuned behaviour, we consider the linear response of the
IR-coupled QW when the driving field is resonant with the intersubband transition (1k = 0).
Evaluation of (23) for the system studied in figure 4 gives the results shown in figure 7. One
can see for�12 = 0.1 ps−1 (I = 0.6 kW cm−2), where the system is weakly driven by the
IR field (solid line), the response to the probe has a Lorentzian spectrum. For�12 = 2 ps−1

(I = 0.24 MW cm−2), however, the linear response spectrum becomes strongly broadened
(dashed line). When the field intensity is increased to�12 = 5 ps−1 (I = 1.5 MW cm−2)
the absorption spectrum develops into a triplet (dotted line). Ultimately, as the inset shows,
for �12 = 10 ps−1 (I = 6 MW cm−2) the absorption spectrum becomes partially negative
with three distinct peaks. This spectrum is similar to the Mollow spectrum obtained in
atomic systems [14].

The linear response of the system when the strong field is detuned by1k = 30 ps−1 is
shown in figure 8 for various IR intensities. The spectrum contains three basic features for
all intensities: a blue-shifted absorption peak, a dispersive feature at the frequency of the
driving field (marked by an arrow), and a gain peak at a frequency lower than that of the
driving field. Increasing the field intensity causes suppression of the absorption peak, and
increases both its blue shift and the red shift of the gain peak. For�12 ' 40 ps−1 the gain
spectrum reaches its maximum at 120 ps−1 below the higher transition subband. Further
increase in the field intensity causes shifting of the gain spectrum to still lower frequencies,
with a gradual decrease in peak gain. The structure at the driving field frequency does not
shift but diminishes in amplitude with increasing field intensity.

7. Discussion

In this paper we studied the mutual effects of the ground subband electron–electron scattering
process and intersubband transitions on each other in n-doped QWs. We considered the low-
field regime where the system basically shows its intrinsic response, including the effect
of electron–electron scattering on the intersubband polarization dephasing rates. We also
studied these effects in the nonlinear regime where the IR field excites a significant number
of electrons into the higher subband. In the latter case, our calculations predict the generation
of steady-state non-Fermi electron distributions in both coupled subbands. In the past, such
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Figure 7. Linear absorption of the quantum well for various resonant infrared field intensities.
Solid line corresponds to�12 = 0.1 ps−1, dashed line to�12 = 2 ps−1, dotted line to
�12 = 5 ps−1, and dashed–dotted line to�12 = 10 ps−1. The inset shows�12 = 10 ps−1 in
more detail. Other specifications are the same as in figure 1.

Figure 8. Linear absorption of the quantum well for various infrared field intensities with
1 = 30 ps−1. The numbers indicate the Rabi frequency of each curve, in ps−1. The arrow
shows the frequency of the pumping field. Other specifications are the same as in figure 4.
Inset: the origin of the tunable gain peak. (See section 7.)

distributions have usually been studied only in transient cases, e.g. in studies of the evolution
of photo-excited carriers generated by a fast interband or intersubband pulse using a probe
field or photoluminescence measurement [28–30].

An important result was found in the case where the strongly driven system was probed
by a weak IR field. Figures 7 and 8 showed generation of Mollow spectra in intersubband
transitions in QWs. The results of figure 8, however, are particularly appealing for both
practical and fundamental reasons. The dispersive feature seen in figure 8 is caused
by competition between the gain and absorption processes [26]. In that respect, it is a
quantum interference phenomenon. The gain in this feature is caused by stimulated Rayleigh
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scattering. The tunable gain profile, however, is the result of absorption of two driving field
photons and stimulated emission of one photon with the gain frequency, as indicated in the
inset of figure 8. As the driving field intensity increases, the|1〉+k and |2〉−k dressed states
move closer together in energy, and thus the gain frequency decreases. In atomic systems,
this is usually called hyper-Raman or three-photon gain. Since this process transfers the
system from the ground subband to a higher one, it is not gain without inversion. In fact,
the dressed states are inverted, even though there is no inversion in the bare subbands [27].

The GaAs/Ga0.7Al 0.3As structure of figure 8 has an energy spacing between the
conduction subbands of 144 meV [25]. A CO2 laser with photon energy 124 meV then has a
20 meV detuning, close to that of figure 8. Considering a pulsed laser capable of producing
intensities up to 200 MW cm−2 (�12 ' 60 ps−1), one sees that gain can be generated as
much as 100 meV (150 ps−1) below the higher subband energy. In other words, based
on figure 8 the photon energy of the gain is continuously tunable between 44 meV and
about 90 meV, simply by varying the intensity of the driving laser. This portion of the IR
spectrum is currently underdeveloped in QWs [31], because the fast LO phonon scattering
process foils the conventional inversion schemes for intersubband-based far-infrared lasers.

If the sign of the detuning were changed (i.e.1k = −20 meV), the absorption spectrum
would be a mirror image of that in figure 8. The photon energy of the gain emission would
then be 244 meV for a driving field with 164 meV photon energy and intensity of the order
of 200 MW cm−2. Using other QW structures, gain may be generated in other portions of
the far-infrared spectrum.

Regarding figures 7 and 8, one should note that in contrast to an atomic system, where
the spectrum contains a single transition line, in the case of a QW it is a superposition of a
large number of transition lines with different damping rates (see (23)). These lines, which
correspond to various values ofk, have different linear spectra in general, but add up to
give a single spectrum due to the nearly equal effective masses of the electrons.

The structure we chose was quite narrow (6.5 nm). This was crucial since the conduction
band supported only two bound subbands and no quasi-bound subband [25]. This is not the
case for wider QWs such as GaAs/Ga0.7Al 0.3As with 8.5 nm well width, which is usually
considered in discussions of the IR coupling of QWs [32]. In this case, the quasi-bound
subband is very close to the band edge, therefore its coupling to the two bound subbands
has to be considered in the strong-field regime [33]. This subject is addressed in another
paper [34].

The results of this paper can be tested experimentally using a conventional waveguide
geometry [35]. Such a structure allows the strong IR and probe fields to enter the QW such
that their electric fields have large components along the well’s growth direction.

8. Conclusion

In this paper, we studied how the dephasing rates associated with intersubband transitions in
n-doped QWs depend on the electron–electron scattering process for various IR intensities.
We showed that, in contrast to previous investigations in which these rates were considered
to be constant, they play a dynamic role in the response of the QW to IR fields polarized
along its growth direction. By inspecting the electron distributions in both subbands, the
k dependence of the dephasing rates was found to be important at low field intensities. As
the intensity of the IR field increased, thek dependence became weaker but the magnitude
of the dephasing rates increased significantly due to enhancement of the electron–electron
scattering process in the ground subband. We also studied the linear response of the
IR-driven quantum well to a weak field. The results showed generation of a gain spectrum
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with large tunability. Various aspects of this process and its impact in intersubband-based
IR and far-infrared QW lasers were discussed.

Acknowledgment

This research is supported by the Natural Sciences and Engineering Research Council of
Canada.

References

[1] Kastalsky A 1993IEEE J. Quantum Electron.QE-29 1112
[2] Levine B F, Gunapala S D and Kopt R F 1991Appl. Phys. Lett.58 1551
[3] Hunsche S, Leo K, Kurz H and Kohler K 1994Phys. Rev.B 50 5791
[4] Faist J, Capasso F, Sirtori C, Sivco D, Hutchinson A, Chu S and Cho A 1993Appl. Phys. Lett.63 1354
[5] Sadeghi S M and Meyer J 1996Phys. Rev.B 53 10 094
[6] Noda S, Uemura T, Yamashita T and Sasaki A 1992IEEE J. Quantum Electron.QE-28 493
[7] Ahn D and Chuang S L 1987J. Appl. Phys.62 3052

Ahn D and Chuang S L 1987IEEE J. Quantum Electron.QE-23 2196
[8] Shao-hua and Feng Si-min 1991Phys. Rev.B 44 8165
[9] Roan E J and Chuang S L 1991J. Appl. Phys.69 3249

[10] Sengers A J, Tsang L and Kuhn K J 1993Phys. Rev.B 48 15 116
[11] Huang D, Gumbs G and Manasreh M O 1995Phys. Rev.B 52 14 126
[12] Chang Yia-Chung and James R B 1989Phys. Rev.B 39 12 672
[13] Chuang S L, Luo M S C, Schmitt-Rink S and Pinczuk A 1992Phys. Rev.B 46 1897
[14] Mollow B R 1972Phys. Rev.A 5 2217
[15] Rossi F, Haas S and Kuhn T 1994Phys. Rev. Lett.72 152
[16] Hughes S, Knorr A, Koch S W, Binder R, Indik R and Moloney J V 1996Solid State Commun.100 555
[17] Binder R, Scott D, Paul A E, Lindberg M, Henneberger K and Koch S W 1992Phys. Rev.B 45 1107
[18] Smet J H, Fonstad C G and Hu Q 1996J. Appl. Phys.79 9305
[19] Esipov S E and Levinson Y B 1987Adv. Phys.36 331
[20] Schmitt-Rink S, Chemla D S and Haug H 1988Phys. Rev.B 37 941
[21] Bloss W L 1989J. Appl. Phys.66 3639
[22] The shifts in the absorption spectrum due to the depolarization and exchange effects are partially compensated

by the excitonic correlations (see [13]). In practice, one can considerEc(2, k) − Ec(1, k) in (22) to be
the result of calculations of a QW structure in the weak-field regime including all these effects (see [21]).
In the strong-field regime, the electron population remains confined to the well and the coupled subbands
are extensively broadened. As a result, dynamic renormalization of the energy separation does not have a
significant effect on the results of this paper.

[23] Asai H and Kawamura Y 1991Phys. Rev.B 43 4748
[24] Lyo S K 1991Phys. Rev.B 43 7091
[25] Bastard G, Brum J A and Ferreira R 1991Solid State Phys.44 229
[26] Wu F Y, Ezebiel S, Ducloy M and Mollow B R 1977Phys. Rev. Lett.38 1077

Grynberg G and Cohen-Tannoudji C 1993Opt. Commun.96 150
[27] Lezama A, Zhu Yifu, Kanshar M and Mossberg T W 1990Phys. Rev.B 41 1576

Grandclement D, Grynberg G and Pinard M 1987Phys. Rev. Lett.59 40
[28] Bohne G, Sure T, Ulbrich R G and Schafer W 1990Phys. Rev.B 41 7549
[29] Elsaesser T, Shah J, Rota L and Lugli P 1991Phys. Rev. Lett.66 1757
[30] Lutgen S, Kaindl R A, Woerner M, Elsaesser T, Hase A and Kunzel H 1996Phys. Rev.B 54 R17 343
[31] Sun G and Khurgin J B 1993IEEE J. Quantum Electron.QE-29 1104
[32] Frohlich D, Neumann Ch, Spitzer S, Uebbing B and Zimmermann R 1991Proc. Int. Meeting on Optics of

Excitons in Confined Systems (Giardini Naxos, 1991)pp 227–36
[33] To see this effect on the interband excitonic response of an IR-coupled QW see Sadeghi S M, Young J F

and Meyer J 1997Phys. Rev.B 56 R15557
[34] Sadeghi S M, Leffler S R and Meyer J 1998Opt. Commun.at press
[35] Ramsteiner M, Ralston J D, Koidl P, Dischler B, Biebl H, Wagner J and Ennen H 1990J. Appl. Phys.67

3900


